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We present DNS results of vortex-induced vibrations (VIV) of #exible cylinders with aspect
ratio greater than 500, subjected to linear and exponential sheared #ows. The maximum
Reynolds number is Re

m
"1000 resulting in a turbulent near-wake. The "rst case corresponds

to lock-in of the third mode (n"3), while the second case is a multi-mode response with excited
modes as high as n"12 and 14. We observed vortex dislocations similar to the structures
visualized in experiments for stationary cylinders, and obtained corresponding force distribu-
tions. Strong vortex dislocations can result in substantial modulation of the forces on the body,
and such e!ects have to be taken into account when constructing low-dimensional predictive
models. ( 2001 Academic Press
1. INTRODUCTION

PREVIOUS EXPERIMENTAL STUDIES of vibrating cylinders subjected to sheared #ows have
shown the existence of cellular shedding patterns (Stansby 1976; Woo et al. 1981; Peltzer
& Rooney 1985). The size and stability of such cells have some subtle di!erences with
similar structures encountered in stationary cylinders, as synchronization (lock-in) and
multi-mode response compete directly with frequency mismatching along the span. The
latter is the primary reason for the cell formation in either sheared #ow or uniform #ow past
tapered cylinders (Maull & Young 1973; Noack et al. 1991; Williamson 1992). The results
from the experimental work suggest that the size of the cells is proportional to the
amplitude of vibration and inversely proportional to the shear parameter b. This parameter
is de"ned as b"(d/;) (Lu/Lz), where z denotes the spanwise (cylinder axis) direction, d is the
cylinder diameter, and; the span-averaged free-stream velocity. It is possible, therefore, to
"nd cells of constant shedding frequency of 40 diameters or more unlike the stationary
cylinder where such cells are not longer than approximately 10 diameters (Peltzer &
Rooney 1985).

The experimental work has primarily focused on frequency and point-measurements.
However, measurements of forces on the cylinders are needed to establish the e!ect of
vortex dislocations. Such data are currently missing with the exception of recent work by
Triantafyllou and collaborators who investigated the e!ect of vortex splits (Hover et al.
1998). In numerical work, the "rst three-dimensional simulations of VIV of #exible cylinders
subjected to sheared #ow has been reported in Newman & Karniadakis (1997). Follow-up
work including a detailed force distribution for uniform inyow was reported in Evangelinos
et al. (2000). In that work, the di!erence between a traveling and a standing wave response
was examined, and a new empirical model was proposed for predicting the average drag
force.
0889}9746/01/040641#10 $35.00/0 ( 2001 Academic Press



TABLE 1

FLOW Linear shear in#ow Exponential shear in#ow

Reynolds number (max&min) Re"1000&607 Re"1000&300
Re";d/l Turbulent regime Turbulent/transition regime

In#ow pro"le Linear Gaussian
STRUCTURE Beam Beam/cable

Boundary conditions Pinned and hinged ends
Constraints No streamwise motion (x-direction)

Free transverse motion (y-direction)
Aspect ratio, ¸/d ¸/d"567 ¸/d"914
Mass ratio, m m"2 m"2

Cable phase velocity, c c"0)0 c"25)8
Beam phase velocity, c c"4487)92 c"345)248

Damping, R R"0)0 R"0)1
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In the current work, we investigate numerically VIV of #exible cylinders subjected to
shear #ows. We only consider cross#ow motion which is described by
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where we denote by >(z, t) the cross#ow displacement and by F(z, t) the total lift force, i.e.,
including both pressure and viscous contributions. Also, m is the mass ratio, R is the

damping coe$cient, and c"J¹/m; c"JEI/m, where ¹ is the tension and EI the bending
sti!ness. The lift force is obtained by DNS using the spectral/hp element method
(Karniadakis & Sherwin 1999), implemented in the parallel code NeiTar.

In Table 1, we list the values of the parameters in equation (1) for the two main cases we
consider in this paper. The "rst case corresponds to in#ow with linear shear while the
second case corresponds to exponential shear described by a Gaussian distribution. The
maximum Reynolds number is Re

m
"1000 in both cases and thus a turbulent near-wake is

developed. These two cases represent realistic situations corresponding to experimental and
"eld conditions [see references in Furnes (1998) and Allen (1995)]. In equation (1), we refer
to the type of structure as a beam if cO0 and as a cable if cO0. For the linear shear we
examine a beam, and for the exponential shear a mixed beam}cable structure. We also note
that unlike most of the previous studies where the aspect ratio of the cylinder was of the
order of 100 or less (typically 20}50), here we consider a very large value of aspect ratio
(5500, see Table 1).

The numerical simulation and mesh is similar to the one used in Evangelinos &
Karniadakis (1999) with 64 points placed along the span, which is su$cient to capture the
larger structures only. In order to process spectral information, 64 history points were
placed in the near-wake of the cylinder. They are located equidistantly along the span, at the
centerline and at x/d"3 in the streamwise direction. Values of velocity and pressure "elds
are sampled at these history points. Handling such large computational domains requires
a great amount of computational resources, especially long-time integration to achieve
stationarity of the #ow. The only other DNS we are aware of is the work of Vanka and
collaborators (Mukhopadhyay et al. 1999), who study the laminar wake of a stationary
cylinder at an aspect ratio of 24 using a "nite volume method.



Figure 1. Linear shear case. Iso-contours of cross#ow velocity at Re
m
"1000. Only the part corresponding to

the large in#ow is shown. Dark color: v"!0)2; light color: v"0)2. View normal to the (x, z) horizontal plane,
where 804z/d4400 and 04x/d412)5; #ow is upward.

Figure 2. Exponential shear case. Iso-contours of cross#ow velocity at Re
m
"1000. Dark color: v"!0)2; light

color: v"0)2. View normal to the (x, z) horizontal plane, where 04z/d4400 and 04x/d435; #ow is upward.
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1.1. VISUALIZATION OF VORTEX DISLOCATIONS

The most prominent feature observed in shear #ow over a blu! body is the shedding of
vortices in cells of constant frequency. Because of the mismatch in frequency, vortex
dislocations are generated between these cells. The presence of these vortex dislocations in
wakes contributes to the transition to turbulence. Vortex dislocations are encountered in
transitional and turbulent wakes as well as in laminar wakes, but in a more ordered fashion.

Visualization of vortex dislocations is more clear at low Reynolds number. To this end,
we "rst simulated shear #ow past a #exible beam subject to forced and free vibrations for
a pinned cylinder of aspect ratio ¸/d"567 with a mean Reynolds number Re"80)35 and
a shear parameter b+8)8]10~4; these results and corresponding visualizations were "rst
reported in Lucor et al. (2000). The frequency reduces as the cosine of the shedding angle
(this angle gets steeper as the in#ow velocity decreases); similar results were reported for
a stationary cylinder in Mukhopadhyay et al. (1999). A localized lock-in of the left part of
the beam, which corresponds to the side experiencing the large in#ow, is obtained. This is
similar to the lock-in cell observed in the experiments of Peltzer & Rooney (1985) which
extended over 44 cylinder diameters in a cylinder with aspect ratio 107. Here the size of the
"rst cell is larger than that, as both the amplitude of the vibration is larger and the shear
parameter is smaller than the experiment [see also Peltzer & Rooney (1985)]. In addition,
a signi"cant increase of drag and lift forces was observed in this region of the structure.

The structure, size and dynamics of the dislocations in the case of uniform in#ow past
a stationary cylinder have also been described by Williamson in more recent experimental
work (Williamson 1992). He obtained a relationship between the di!erent vortex structures
across the boundary between two cells, and explained the interactions between these
structures. He also established, in the case of transitional wakes, that the beating frequency
of the dislocation between a cell of frequency f

1
and a cell of frequency f

2
is f

D
"f

1
!f

2
.

This has successfully been veri"ed in our simulation for a moving cylinder, suggesting
a universality of vortex dislocations. As regards the #uctuation of cell boundaries, our
results con"rm the experimental results of Stansby (1976) and Peltzer & Rooney (1985) that
vibrations have a stabilizing e!ect.

Similar visualizations were obtained for a freely moving cylinder. At higher Reynolds
number, however, it is more di$cult to discern such a clear pattern although a similar
picture emerges. For example, for the linear shear #ow at Re

m
"1000 we use the cross#ow

velocity to qualitatively capture instantaneous vortex dislocations in Figure 1. In Figure 2,
we plot the cross#ow velocity contours in the near-wake for the exponential shear case. We
observe a structure much more complex than the linear shear case but with distinct pockets
of vortex dislocations, qualitatively similar to the structures we observed in laminar wakes
and in linear shear. It is also clear from this plot that the #ow does not correlate well along
the span of the cylinder, and this invalidates the assumption of full-span correlation
employed in the semi-empirical models such as SHEAR7 (Vandiver & Li 1994).

2. VIV FOR LINEAR SHEAR INFLOW

For this simulation the cylinder-to-#uid mass ratio is 2, the structural damping is set to 0)0
in order to obtain a maximum response, and the beam phase speed is set to c"4487)92 for
lock-in; this corresponds to a natural nondimensional frequency for the beam of 0)1973. For
this linear shear in#ow, the maximum Reynolds number (at z/d"0)0) and minimum
Reynolds number (at z/d"567) are 1000 and 607, respectively, with a mean value of 803)5.
The shear parameter is b+8)8]10~4, smaller than most of the values used in previous
experiments, where b50)005 [see e.g., Peltzer & Rooney (1985)]. These values are close to



Figure 3. Left: cross#ow-displacement (r.m.s. values* horizontal axis) of the beam along the span normalized
with the cylinder diameter. Right: corresponding power spectral density (x-axis: frequency nondimensionalized

with maximum velocity; y-axis: power spectral density; z-axis: span of the cylinder.
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those used in the experiments reported in Furnes (1998) with the exception of Reynolds
number, which is lower in the current simulations.

2.1. DISPLACEMENT AND FORCE DISTRIBUTION

In Lucor et al. (2000), we "rst reported results for this case; a standing wave response was
obtained with the third mode excited. The location of the nodes, however, moves somewhat
in time, which explains the small but nonzero r.m.s. values of the cross#ow displacement.
Speci"cally, a slight shift of these nodes towards the side of the low in#ow in the shear in#ow
case compared to the uniform in#ow cases is observed (Evangelinos et al. 2000). The
standing wave partitions the span of the cylinder in three di!erent cells. The maximum
structural response of the beam is reached on the side of the high in#ow. Figure 3 displays
the standard deviation or r.m.s. values of the vertical displacement of the beam, (>(z)/d)

3.4
,

(normalized by the cylinder diameter), and the spectrum of (>(z)/d)
3.4

. The maximum r.m.s.
value of the cross#ow displacement of the beam occurs within the "rst cell. The r.m.s.
structural responses obtained in the second and the third cell are equal even though the
beam experiences di!erent in#ow velocity. These amplitudes are about 20% lower than the
maximum amplitude of the "rst cell.

The natural frequency of the beam was set to 0)1973, which is the frequency response of
a rigid cylinder subject to VIV at a Reynolds number of 1000 (Evangelinos & Karniadakis
1999). If we represent the cross#ow motion in the spectral space, we see that only one mode
is excited. The structure frequency response is 0)183 (see Figure 3, right). The spectral
density is maximum in each cell between the nodes. The wake frequency based on the
Reynolds number associated with the mean in#ow velocity from the shear in#ow for
a stationary cylinder is around 0)21 (Fey et al. 1998). Therefore, the coupled #ow}structure
system has a frequency response that deviates towards a smaller value from the imposed
frequency, here f"0)197, [see also Evangelinos & Karniadakis (1999)].

In Figure 4, we plot the mean values of the drag coe$cient, (C
d
(z))

.%!/
, and r.m.s. values

of the lift coe$cient along the span of the cylinder. The lift and drag coe$cients represented
along the span are normalized by the local in#ow velocity. Due to the shear in#ow the local
Reynolds number along the span varies from 1000 to 607. The mean value of C

d
(z) is about

1)66. The maximum value of C
d
(z) takes place at the midspan and its value is 13% larger

than the maximum C
d
(z) in the case of the uniform in#ow [2)1 versus 1)82; see Evangelinos

et al. (2000)] and 29% larger than the C
d
(z) at the same location in the case of the uniform



Figure 4. (a) Distribution of (C
d
)
.%!/

along the span. (b) Distribution of (C
l
)
3.4

along the span. The local in#ow
velocity is used in the normalization.

Figure 5. Comparison of time-histories of drag force at di!erent locations along the span: (a) z/d"248)06; (b)
283)5; (c) 416)39.
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in#ow [2)1 versus 1)55; see Evangelinos et al. (2000)]. The local minimum values of the C
d
(z)

are located at the nodes, in agreement with the uniform in#ow results (Evangelinos et al.
2000).

The plot of (C
l
(z))

3.4
exhibits a large value in the third cell and a small value in the "rst

cell. The response in the central cell is more intriguing and is split into two zones. The
overall (C

l
(z))

3.4
along the span has a mean value of 1)12. A maximum value of 2)22 is

reached at z/d"505 and a minimum value of 0)35 is achieved at the midspan.
The plot of the lift coe$cient can be related to the cross#ow motion. The apparent

inconsistency between the plots above could be explained by a phase analysis. The spectral
density plot (not shown here) of the C

l
signal as a function of the frequency shows that only

two frequencies are primarily excited. The "rst one corresponds to the frequency of the
beam oscillation ( f"0)183, see also Figure 3), while the second one is an incomensurate
higher frequency ( f"0)296), which we have not been able to relate to other frequencies.
Clearly, the dominant frequency of C

l
along the cylinder is f"0)183, especially within the

third cell where large spectral densities are obtained. We have observed that the C
l
signal is

in-phase with the beam motion in this cell. This might also explain why the displacement in



Figure 6. Spanwise (z) power spectral density of the v-component of the velocity "eld (x-axis denotes frequency
nondimensionalized with maximum velocity; y-axis denotes power spectral density, z-axis denotes the span of

the cylinder).
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the third cell is comparable to the displacement of the second cell even though they
experience di!erent in#ows.

Finally, in Figure 5 we plot the time histories of the drag force at three di!erent locations
along the beam. These positions have been identi"ed after a spectrum analysis of the
cross#ow v-velocity and streamwise u-velocity (not shown here) in order to locate the
positions of the main vortex dislocations. The "rst plot shows the drag force at z/d"248)06,
which is the location of the main vortex dislocation of this #ow. The second graph is used as
a reference and does not reside within a vortex dislocation. Finally, the third graph shows
values of drag forces at another vortex dislocation of smaller intensity. There exists
a signi"cant low-frequency modulation at the "rst and the third locations compared to the
second one. These low frequencies are the same as the leading frequencies of the streamwise
u-velocity at these positions.

2.2. FREQUENCY RESPONSE

In Figure 6, we plot frequency spectra of the cross#ow velocity along the beam. These
frequencies can be interpreted as Strouhal numbers based on the maximum in#ow velocity of
the #ow (;

m
"1)0). The most distinguishing feature observed in Figure 6 is the shedding of

vortices at constant frequencies. It can be shown that all these peak frequencies are, in fact,
linear combinations of the harmonics of f

1
"0)1996 with the harmonics of f

2
"0)2082,

and they can be written in this case as

[m!3(n!1)] f
1
#[4(n!1)!m] f

2
, (2)

where n"2 and m"1, 2,2, 16. It is interesting to note that f
1

is very close to the natural
frequency for the beam ( f"0)1973) and f

2
corresponds to the Strouhal number of the #ow

past a stationary circular cylinder at Reynolds number of 620 (Fey et al. 1998). We recall
that 607 is the Reynolds number that corresponds to the minimum in#ow velocity of our
shear in#ow.



Figure 7. Time-history of the distribution of cross#ow displacement along the span. A mixed standing}traveling
wave pattern prevails, unlike the linear shear case.

Figure 8. (a) Cross#ow displacement (r.m.s. values) along the span (normalized with the cylinder diameter).
(b) Corresponding spectrum showing the (nondimensional) frequency response (range: 0}0)3) along the span. The
frequency is normalized with the maximum in#ow velocity (x-axis: frequency nondimensionalized with maximum

velocity; y-axis: power spectral density; z-axis: span of the cylinder).
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Barring end-e!ects that may be induced by possible numerical artifacts, we can distin-
guish several di!erent frequency cells or frequency ranges. These cells do not match the cells
de"ned by the beam displacement (see Figure 3). The length of these cells is approximately
as follows. There is a large "rst cell from z/d"50 to 250 with a frequency of f"0)183,
which is the frequency of the cross#ow motion of the beam. Then, the second cell lies
between z/d"250 and 370 with two frequencies f"0)183 and 0)165. A third large cell is
between z/d"370 and 425, and the last cell "lls the gap between z/d"430 to the end of the
beam span. In this case, the spectrum is not very sharp, and it is therefore more di$cult to
identify the characteristic frequency. Between the cells we notice bu!er zones with small
spectral density, low energy, e.g. at the midspan, or total energy distributed over a larger
number of modes, e.g. at the second-node zone. Clearly, these cells are much larger than the
cells encountered in stationary cylinders but this is expected for vibrating cylinders,
especially since the shear parameter is very small in our case, and the aspect ratio is
very large. The current results are certainly consistent with the experimental results and
conclusions reported in Peltzer & Rooney (1985).

3. VIV FOR EXPONENTIAL SHEAR INFLOW

In in#ows with large shear the possibility exists for excitation of high modes and of
a multi-mode response (Kim et al. 1985; Vandiver 1991). This is evident in the case we
consider here that corresponds to c"345)248 and c"25)8 (see Table 1). The correspond-
ing eigenspectrum of a beam}cable structure pinned at both ends is determined by

u2"c2k4C1#
c2

c2k2D , k"
nn

(¸/d)
, (3)

where n is the mode number. Substituting the parameters of Table 1 we obtain a non-
dimensional frequency of 0)193 for mode n"12. Given that the Strouhal number at
Re&O (1000) is about St+0)2, we verify that indeed the possibility exists for such high
modes to be locked-in to the wake.

The speci"c form of shear pro"le imposed at the inlet in this case is described by

;(z)"(1!;
f
) e~a(z@d)2#;

f
, ;

f
"0)3, a"5)0]10~5 (4)

with the high in#ow velocity located at z/d"0. The shear parameter in this case is
b+0)005.

3.1. DISPLACEMENT AND FORCE DISTRIBUTION

In Figure 7, we plot the time-history of the cross#ow displacement along the spanwise
direction. We see that a mixed response is established, which can be characterized as hybrid
between a standing wave and a traveling wave, unlike the linear shear case where a lock-in
standing wave pattern was obtained. The r.m.s. values of the cross#ow displacement along
the span of the cylinder are plotted in Figure 8 (left) along with the corresponding spectrum
(right) showing a multi-mode frequency response. Unlike the linear shear case, here the
structure oscillates at low frequencies. To investigate further this multi-mode response we
obtained the excited modes by analyzing two di!erent instantaneous responses in
wavenumber space (plot not shown here). The highest contributing modes are n"14}16
which agree with the results of Triantafyllou et al. (1994), a code based on empirical
modeling of the #ow and eigenfrequency analysis for the structure. The span-averaged value
of the cross#ow displacement predicted by the current simulation is 0)22 compared to 0)243
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obtained by Triantafyllou et al. (1994). Also, comparison of the instantaneous response
pro"les with "eld measurements (performed on a drilling riser with similar geometric
properties and responding to a current with similar shear parameter) between the locations
274z/d455, is very good (Allen 1995). An important di!erence, already mentioned,
between the linear shear response and the exponential shear response is that in the former
a standing wave pattern is observed, whereas in the latter a hybrid standing}traveling wave
pattern prevails.

3.2. FREQUENCY RESPONSE

We have already seen that the beam}cable structure oscillates at a low frequency. This
frequency is approximately the same as the low frequency in the wake (plot not shown here)
on the low in#ow side. In contrast, the lift follows a response similar to the wake on the side
of the high-velocity in#ow. Therefore, unlike the linear shear case where the frequency
response of lift, the wake, and the structure are the same, in the case of exponential shear the
lift and the beam}cable response are not the same.

4. SUMMARY AND DISCUSSION

In this paper, we have addressed the e!ects of linear and exponential shear pro"les in VIV of
very long #exible cylinders using spectral DNS. The main di!erence between the two cases
is that in linear shear the structural response resembles a standing wave pattern, whereas in
the exponential shear case it resembles a mixed standing}traveling wave pattern. For the
parameters considered here, the linear shear led to a low-mode (mode 3) response while the
exponential shear led to a multi-mode response with modes as high as 12 and 14 participat-
ing.

More quantitatively, the di!erence in the two cases can be summarized in the plots of
Figure 9, which include the frequency response of the wake and the structure as well as the
natural frequency of the structure. The cross#ow velocity at points (x/d"3, y/d"0, z/d) is
analyzed to obtain the shedding frequency. The most distinguishing feature in these plots is
the shedding of vortices at constant frequencies, as it is evident by the values of the Strouhal
number which are on parallel lines. This is more pronounced for the linear shear case, for
which we also observe that the beam locks on to a wake frequency which dominates on the
side of the high in#ow. This frequency is lower than the natural frequency of the beam for
mode n"3. On the other hand, for the exponential shear we need to consider di!erent
modes because of the multi-mode response of the structure. The structure response (non-
dimensional) frequency varies from about 0)05 to just above 0)23 with corresponding
excited natural modes from n"3 to 12.

We have found that the nodes of the structure are not always located exactly at
a boundary between two cells. We also obtained cells of constant shedding frequency, which
are much longer than the cells in stationary cylinders reported in experimental work.
However, their size is consistent with the experimental results and corresponding con-
clusions reached in the works of Stansby (1976) and Peltzer & Rooney (1985). It was
reported in these works that the size of the cells scales proportionally to the amplitude of
cross#ow displacement and inversely proportional to the shear parameter. Moreover, we
have seen in our simulations that the larger aspect ratio of the #exible cylinder allows for
larger cellular patterns. This too is consistent with the experimental results of Peltzer (1982)
if we extrapolate from his range of aspect ratio (¸/d&20}100) to our values (¸/d&
567}914).



Figure 9. Frequency distribution of wake and structure along the span showing cellular shedding and multi-
mode response. (a) linear shear; (b) exponential shear. Circles denote dominant frequency of cross#ow velocity and
triangles dominant frequency of the structure response. The maximum in#ow velocity is used in the normalization

of the frequency.
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With regards to force distribution on the structure, we have found that vortex disloca-
tions have a signi"cant e!ect on the instantaneous force distributions along the span of the
cylinder. The location of vortex dislocations in the wake can best be obtained by searching
for energetic low frequencies of the streamwise velocity component (plot not shown here).
We have observed that there exists a signi"cant modulation of the forces on the body by
these low frequencies at the spanwise locations corresponding to the vortex dislocations.
This demonstrates that strong vortex dislocations can have a substantial e!ect on the forces
acting on the body, and such e!ects have to be taken into account when constructing
low-dimensional predictive models.
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